Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Oral Investig ; 28(3): 197, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38448748

RESUMO

OBJECTIVES: This study aimed to investigate the strain in the bone surrounding dental implants supporting a 4-unit bridge and assess the role of excessive strain as a possible risk factor for implant related sequestration (IRS) or peri-implant medication-related osteonecrosis of the jaw (PI-MRONJ). MATERIALS AND METHODS: A 3D-mandibular model was constructed using computed tomography and segmented it into cortical and cancellous bones. The 4-unit implant-supported bridges replacing the mandibular posteriors were constructed, and each featuring two, three, and four implants, respectively. The Young's modulus was assigned based on the quality of the bone. A maximum occlusal force of 200 N was applied to each implant in the axial and in a 30-degree oblique direction. RESULTS: The maximum principal strain of the fatigue failure range (> 3000 µÎµ) in the bone was analyzed. The volume fraction of fatigue failure was higher in poor-quality bone compared to normal bone and oblique load than in axial load. An increasing number of implants may dissipate excessive strain in poor-quality bones. CONCLUSIONS: Occlusal force applied to poor-quality bone can result in microdamage. Given that unrepaired microdamage may initiate medication-related osteonecrosis of the jaw, long-term occlusal force on fragile bones might be a risk factor. CLINICAL RELEVANCE: When planning implant treatment for patients with compromised bone status, clinical modifications such as strategic placement of implants and optimization of restoration morphology should be considered to reduce excessive strain which might be associated with IRS or PI-MRONJ.


Assuntos
Implantes Dentários , Osteonecrose , Humanos , Força de Mordida , Módulo de Elasticidade , Mandíbula
2.
Small ; : e2401295, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38412421

RESUMO

Lithium-ion capacitors (LICs) exhibit superior power density and cyclability compared to lithium-ion batteries. However, the low initial Coulombic efficiency (ICE) of amorphous carbon anodes (e.g., hard carbon (HC) and soft carbon (SC)) limits the energy density of LICs by underutilizing cathode capacity. Here, a solution-based deep prelithiation strategy for carbon anodes is applied using a contact-ion pair dominant solution, offering high energy density based on a systematic electrode balancing based on the cathode capacity increased beyond the original theoretical limit. Increasing the anode ICE to 150% over 100%, the activated carbon (AC) capacity is doubled by activating Li+ cation storage, which unleashes rocking-chair LIC operation alongside the dual-ion-storage mechanism. The increased AC capacity results in an energy density of 106.6 Wh kg-1 AC+SC , equivalent to 281% of that of LICs without prelithiation. Moreover, this process lowers the cathode-anode mass ratio, reducing the cell thickness by 67% without compromising the cell capacity. This solution-based deep chemical prelithiation promises high-energy LICs based on transition metal-free, earth-abundant active materials to meet the practical demands of power-intensive applications.

3.
Materials (Basel) ; 16(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37445067

RESUMO

The biomechanical effects of dental tissue according to various dental crown materials were investigated using finite element analysis. Bone, prepared tooth, root canal, and periodontal ligament were modeled based on computed tomography. Depending on the characteristics of the crown material, it was classified into zirconia, hybrid ceramic, gold alloy, and acrylic resin. A loading force of 200 N was applied in the vertical direction to the occlusal surface of the crown, and analysis was performed under the condition that all interfaces were tied. The results demonstrate that the highest von Mises stress was shown in the prepared tooth of the acrylic resin model, which is a temporary prosthesis, and the pulpal pressure was also the highest. Additionally, among the final prosthesis, the highest stress was shown in the hybrid ceramic model prepared teeth. The properties of restoration materials can be a factor influencing the tooth structure. Thus, in order to make a correct decision when selecting a material for restorative treatment, it is necessary to understand, analyze, and evaluate the properties of these restoration materials.

4.
Comput Methods Programs Biomed ; 221: 106852, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35660763

RESUMO

BACKGROUND AND OBJECTIVE: While an accurate assessment of the biomechanical stability of implants is essential in dental prosthesis planning and associated treatment assurance, the bone remodeling process is often ignored in biomechanical studies using finite element (FE) analysis. In this study, we aimed to analyze the significance of assessing the bone remodeling process in FE analysis for evaluating the biomechanical stability of dental implants. We compared the FE results considering the bone remodeling process with FE results simulated using commonly used conditions, with no considerations of the bone remodeling process. METHODS: The mathematical model proposed by Komarova et al. was used to calculate cell population dynamics and changes in bone density at a discrete site. The model was implemented in the FE software ABAQUS, using the UMAT subroutine. Three-dimensional FE models were constructed for two types of bone (III and IV) and three values of implant diameter (4.0, 4.5, and 5.0 mm). An average biting force of 50 N in the vertical direction was applied during the bone remodeling process for 150 days. Afterwards, the maximum biting force of 200 N in the 30° oblique direction was applied to evaluate the stability of the implant systems. RESULTS: To understand the impact of bone remodeling on the resultant mechanical responses, we focused on peri-implant cancellous bone based on two parameters: apparent density change and microstrain distribution. The bone density decreased by an average of 5.3 % after implantation, and it was the lowest on the 6th day. The average density increases of the peri-implant cancellous bone were 264.4 kgm3 (bone type III) and 220.0 kgm3 (bone type IV) over 150 days. For the bone stability analysis, the maximum principal strain in the peri-implant bone was used to evaluate the bone stability. If the bone remodeling process is ignored, then the bone volume within the fatigue failure range of the microstrain differs significantly from that if the bone remodeling process is considered, i.e., 60 % higher for bone type III and 33.4 % lower for bone type IV than when the bone remodeling process is considered. CONCLUSIONS: The FE result without considering the bone remodeling process could be considered a conservative criterion for bone type III. However, in bone type IV, the FE result without considering the bone remodeling process tends to underestimate the risks. The bone remodeling process is more affected by the initial bone quality than the implant diameter.


Assuntos
Implantes Dentários , Fenômenos Biomecânicos , Remodelação Óssea/fisiologia , Simulação por Computador , Análise de Elementos Finitos , Estresse Mecânico
5.
J Am Chem Soc ; 143(24): 9169-9176, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34111352

RESUMO

Although often overlooked in anode research, the anode's initial Coulombic efficiency (ICE) is a crucial factor dictating the energy density of a practical Li-ion battery. For next-generation anodes, a blend of graphite and Si/SiOx represents the most practical way to balance capacity and cycle life, but its low ICE limits its commercial viability. Here, we develop a chemical prelithiation method to maximize the ICE of the blend anodes using a reductive Li-arene complex solution of regulated solvation power, which enables a full cell to exhibit a near-ideal energy density. To prevent structural degradation of the blend during prelithiation, we investigate a solvation rule to direct the Li+ intercalation mechanism. Combined spectroscopy and density functional theory calculations reveal that in weakly solvating solutions, where the Li+-anion interaction is enhanced, free solvated-ion formation is inhibited during Li+ desolvation, thereby mitigating solvated-ion intercalation into graphite and allowing stable prelithiation of the blend. Given the ideal ICE of the prelithiated blend anode, a full cell exhibits an energy density of 506 Wh kg-1 (98.6% of the ideal value), with a capacity retention after 250 cycles of 87.3%. This work highlights the promise of adopting chemical prelithiation for high-capacity anodes to achieve practical high-energy batteries.

6.
PLoS One ; 16(4): e0250354, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33872333

RESUMO

Constipation is a common condition that affects individuals of all ages, and prolonged constipation needs to be prevented to avoid potential complications and reduce the additional stress on individuals with pre-medical conditions. This study aimed to evaluate the effects of heat-inactivated Lactobacillus plantarum (HLp-nF1) on loperamide-induced constipation in rats. Constipation-induced male rats were treated orally with low to high doses of HLp-nF1 and an anti-constipation medication Dulcolax for five weeks. Study has 8 groups, control group; loperamide-treated group; Dulcolax-treated group; treatment with 3.2 × 1010, 8 × 1010 and 1.6 × 1011, cells/mL HLp-nF1; Loperamide + Dulcolax treated group. HLp-nF1 treated rats showed improvements in fecal pellet number, weight, water content, intestinal transit length, and contractility compared to the constipation-induced rats. Also, an increase in the intestine mucosal layer thickness and the number of mucin-producing crypt epithelial cells were observed in HLp-nF1-treated groups. Further, the levels of inflammatory cytokines levels were significantly downregulated by treatment with HLp-nF1 and Dulcolax. Notably, the metagenomics sequencing analysis demonstrated a similar genus pattern to the pre-preparation group and control with HLp-nF1 treatment. In conclusion, the administration of >3.2 × 1010 cells/mL HLp-nF1 has a positive impact on the constipated rats overall health.


Assuntos
Constipação Intestinal/terapia , Trânsito Gastrointestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Lactobacillus plantarum/fisiologia , Laxantes/farmacologia , Metagenoma , Actinobacteria/genética , Actinobacteria/crescimento & desenvolvimento , Actinobacteria/isolamento & purificação , Animais , Bacteroidetes/genética , Bacteroidetes/crescimento & desenvolvimento , Bacteroidetes/isolamento & purificação , Bisacodil/farmacologia , Constipação Intestinal/induzido quimicamente , Constipação Intestinal/microbiologia , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Fezes/microbiologia , Firmicutes/genética , Firmicutes/crescimento & desenvolvimento , Firmicutes/isolamento & purificação , Trânsito Gastrointestinal/fisiologia , Expressão Gênica/efeitos dos fármacos , Temperatura Alta , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Mucosa Intestinal/microbiologia , Loperamida/efeitos adversos , Masculino , Viabilidade Microbiana , Proteobactérias/genética , Proteobactérias/crescimento & desenvolvimento , Proteobactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Ratos , Ratos Sprague-Dawley , Resultado do Tratamento , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Verrucomicrobia/genética , Verrucomicrobia/crescimento & desenvolvimento , Verrucomicrobia/isolamento & purificação
7.
Angew Chem Int Ed Engl ; 59(34): 14473-14480, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32400120

RESUMO

Prelithiation is of great interest to Li-ion battery manufacturers as a strategy for compensating for the loss of active Li during initial cycling of a battery, which would otherwise degrade its available energy density. Solution-based chemical prelithiation using a reductive chemical promises unparalleled reaction homogeneity and simplicity. However, the chemicals applied so far cannot dope active Li in Si-based high-capacity anodes but merely form solid-electrolyte interphases, leading to only partial mitigation of the cycle irreversibility. Herein, we show that a molecularly engineered Li-arene complex with a sufficiently low redox potential drives active Li accommodation in Si-based anodes to provide an ideal Li content in a full cell. Fine control over the prelithiation degree and spatial uniformity of active Li throughout the electrodes are achieved by managing time and temperature during immersion, promising both fidelity and low cost of the process for large-scale integration.

8.
J Med Microbiol ; 68(3): 467-474, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30724726

RESUMO

PURPOSE: Recently, Lactobacillus plantarum (nF1) has been reported to have immune-enhancing effects in an immunosuppressed-animal model. Natural killer (NK) cells and macrophages play important roles in the immune responses. However, immunomodulatory effects of heat-treated Lactobacillus plantarum-nF1 (hLp-nF1) on the activation of NK cells and macrophages have not been elucidated. METHODOLOGY: We assessed whether hLp-nF1 could elevate the activation of NK cells and macrophages using cyclophosphamide (CP)-induced immunosuppressed BALB/c mice and RAW 264.7 macrophages. A nitric oxide (NO) assay, enzyme-linked immunosorbent assay, Western blot analysis and NK cell activity assay were used to examine the effects of hLp-nF1 on the immune enhancement.Results/Key findings. Administration of hLp-nF1-elevated NK cell activities and serum levels of TNF-α, IL-2, and IL-12 in CP-induced immunosuppressed mice. In RAW 264.7 macrophages, treatment with hLp-nF1 increased the production of NO and expression of inducible NO synthase. Simultaneously, hLp-nF1 increased the production of TNF-α, IL-2, and IL-6 from RAW 264.7 cells. Finally, hLp-nF1 induced activation of nuclear factor-κB and phosphorylation of IκBα. CONCLUSION: We identified that hLp-nF1 has an immune-enhancing effect through the activation of NK cells and macrophages. Therefore, these findings suggest that hLp-nF1 would be helpful to enhance the immunity.


Assuntos
Temperatura Alta , Células Matadoras Naturais/imunologia , Lactobacillus plantarum/imunologia , Macrófagos/imunologia , Animais , Ciclofosfamida/administração & dosagem , Citocinas/sangue , Citocinas/imunologia , Hospedeiro Imunocomprometido , Células Matadoras Naturais/efeitos dos fármacos , Ativação Linfocitária , Ativação de Macrófagos , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/imunologia , Óxido Nítrico/análise , Células RAW 264.7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...